Optimisation in the regularisation ill-posed problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

Ill-posed problems in thermomechanics

Several thermomechanical models have been proposed from a heuristic point of view. A mathematical analysis should help to clarify the applicability of these models, among those recent thermal or viscoelastic models. Single-phase-lag and dual-phase-lag heat conduction models can be interpreted as formal expansions of delay equations. The delay equations are shown to be ill-posed, as are the form...

متن کامل

Quadratic Optimization in Ill-Posed Problems

Ill posed quadratic optimization frequently occurs in control and inverse problems and are not covered by the Lax-Milgram-Riesz theory. Typically small changes in the input data can produce very large oscillations on the output. We investigate the conditions under which the minimum value of the cost function is finite and we explore the ‘hidden connection’ between the optimization problem and t...

متن کامل

Ill - posed inverse problems in economics

A parameter of an econometric model is identified if there is a one-to-one or many-to-one mapping from the population distribution of the available data to the parameter. Often, this mapping is obtained by inverting a mapping from the parameter to the population distribution. If the inverse mapping is discontinuous, then estimation of the parameter usually presents an illposed inverse problem. ...

متن کامل

Parameter Identification for Nonlinear Ill-posed Problems

Since the classical iterative methods for solving nonlinear ill-posed problems are locally convergent, this paper constructs a robust and widely convergent method for identifying parameter based on homotopy algorithm, and investigates this method’s convergence in the light of Lyapunov theory. Furthermore, we consider 1-D elliptic type equation to testify that the homotopy regularization can ide...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of the Australian Mathematical Society. Series B. Applied Mathematics

سال: 1986

ISSN: 0334-2700,1839-4078

DOI: 10.1017/s0334270000005221